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Its eigenvectors and eigenvalues correspond to states and energies of a physical system.
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Definition
The k-LH problem is, given a k-local Hamiltonian, estimate its minimum eigenvalue /
ground state energy.

This is analogous to the classical k-Max-SAT problem, where each clause acts on k
variables.
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Definition
For a fixed set S of allowed terms / allowed interactions,
the S-LH problem is k-LH with the promise that any input is of the form

H = ZW;H,- with H; eS8

S-LH classification
[Cubitt, Montanaro 2015], with [Bravyi, Hastings 2014], give a complete classification
of 2-local S-LH as a function of S.

Given any set S of 2-qubit terms, [CM15] describes properties of the terms which
determine whether S-LH is in P or NP-, StogMA-, or QMA-complete.




What about product states?

What is the complexity of estimating minimum product state energies of various
families of local Hamiltonians?
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A product state is an unentangled tensor product of single-qubit states.

P=p1O P& & pn

m Product states can be described efficiently classically.
m They're intermediate between classical states and general quantum states.

m For many natural sets of Hamiltonians, product states are rigorously near-optimal.
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A product state is an unentangled tensor product of single-qubit states. N\
k-LH — prodLH: given a k-local Hamiltonian, calculate the minimum energy over all

product states: minjy (|H[) for [¢) = [h1)[th2). . .[¢n).
S-LH — S-prodLH: the problem prodLH restricted to H = > w;H; with H; € S.

Can we classify the complexity of the product state problem for various families of
Hamiltonians?
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Main Theorem
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Corollary

For any fixed set of 2-qubit Hamiltonian terms S,
the problem S-LH is at least NP-hard if and only if S-prodLH is NP-complete.
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Main Theorem

For S any fixed set of 2-qubit Hamiltonian terms,
if every matrix in S is 1-local then S-prodLH is in P,
and otherwise S-prodLH is NP-complete.

Proof sketch

m If every term is 1-local, then we can optimize the state of each qubit individually,
so the problem is in P.

m prodLH is always contained in NP, using product states’ efficient classical
descriptions.

m To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.

As an example, consider the 2-qubit term
H=XX+YRY+2ZZ

Product state problems can be viewed as optimization over Bloch vectors.

1
et lpv) (@v] = 5 (I +wuX+wY+w2)

Then the energy of the interaction between qubits u and v is

Tr(H |¢u){(dul @ [pv){Pv]) = t1vi + tava + uzvz = - v
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.

So for the example S={X® X+ Y ® Y + Z® Z}, the problem S-prodLH is
equivalent to optimizing sums of inner products:

over unit vectors u, v € R3,
This is a relatively “nice” objective function.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a

nice form like this?
If not, can we force it to?

10
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a N\
nice form? Can we force it to?

Write arbitrary 2-qubit H in Pauli basis:
3 3
H = Z M,'jO',‘®Uj—I-ZCkO'k®/+ wil ® oy.
ij=1 k=1

Then
Tr(H [¢u){dul @ |0u){(dv]) =u Mv+cTu+w'v

This is not as simple as u - v, but we can design gadgets to simplify it.

11




To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form? Can we force it to?

Tr(H ‘¢U><¢u| ® |¢v><¢v|) =u" My + cu + w'v

12




To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form? Can we force it to?

Tr(H ‘¢U><¢u| ® |¢v><¢v|) =u" My + cu + w'v

Trick 1: Symmetrize

It's nice when the objective function is symmetric, so acting on uv is the same as acting
on vu.

Then we can work with un-directed graph problems.

12




To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form? Can we force it to?

Tr(H ‘¢U><¢u| ® |¢v><¢v|) =u" My + cu + w'v

Trick 1: Symmetrize

It's nice when the objective function is symmetric, so acting on uv is the same as acting
on vu.

Then we can work with un-directed graph problems.

Hoym = H? + H = H 1 SWAP H? SWAP

12




To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.

New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form? Can we force it to?

Tr(H [6u)(¢ul @ |6u)(dv]) = u"Mv+cTut+wTv

Trick 2: Delete 1-local terms ¢'u and w'v.
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form? Can we force it to?

TF(H ‘¢u><¢u| ® |¢v><¢v|) - UTMV + CTU + WTV

T

Trick 2: Delete 1-local terms ¢'u and w'v.

Use 4-qubit gadget with 2 ancilla
GYW = HYv 4 Hab _ Hua _ Hbv

sym sym sym sym
u v
+
+
b a

13
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.

New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form?

Further analysis of gadget: G = HYY + H2b — HY“a _ Hbv

sym sym sym sym

u \'

_|_

b + a

After the tricks, how does the expectation value relate to u and v?
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After the tricks, how does the expectation value relate to u and v?
Recall for H= XX+ YQY +27Z2® Z,
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After the tricks, how does the expectation value relate to u and v?
Recall for H= XX+ YQY +27Z2® Z,

Tr (H ¢} {@ul @ [du){dul) = u- v 1= fJu—v|*
Here, each edge/interaction Hsyy, also contributes

Tr(Him [6u)(dul @ [60)(d0]) = u" Mv ~ 1 — |Mu — My,
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form?

Further analysis of gadget: G* = H&y, + H3h, — Hsa, — HbY,

_|_

b + a

After the tricks, how does the expectation value relate to u and v?

Letting the ancilla a, b take optimal values, and summing the four contributions, we get
||Mu — Mv]|

14




To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.

New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form?

We've used Hamiltonian gadgets to embed an objective function of the form
> IMu— My
uveE

into the minimum product state energy.
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form?

We've used Hamiltonian gadgets to embed an objective function of the form
Z ||Mu — Mv||
uveE

into the minimum product state energy.
Now, we can focus on this completely classical graph & vector problem.
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Stretched linear Vector Max-Cut (MCY,)

For W a fixed diagonal matrix,
and a graph G = (V, E),
estimate

1
G) = - ma Wi — Wy
SIS 5 e 8 WS

In words, assign unit vectors V € R¥ to each vertex v in order to maximize the
difference along each edge.
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Stretched linear Vector Max-Cut (MCyy) A\

For W a fixed diagonal matrix,
and a graph G = (V, E),
estimate

1
G) = - ma Wi — Wy
Chla)I= 5 e, B |[Wae]

In words, assign unit vectors ¢ € R¥ to each vertex v in order to maximize the
difference along each edge.

New goal: show MCj, is NP-complete.
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard. N
New goal: show MCj, is NP-complete.
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N\

Stretched linear Vector Max-Cut (MCY,)
For W a fixed diagonal matrix,
and a graph G = (V, E),
estimate q
MCiy(G) = 5 max > Iwa—wi

{i k—1
HES uveE

In words, assign unit vectors V € R¥ to each vertex v in order to maximize the
difference along each edge.

Theorem

For any fixed non-negative nonzero W = diag(«, 3, )
MCYy is NP-complete.

16




To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP—hard.\\
New goal: show MCj, is NP-complete.

Stretched linear Vector Max-Cut (MCY,)

For W a fixed diagonal matrix,

and a graph G = (V, E)

estimate Ci/(G) = E ma Z [Wa— Wy
2 ﬁGS uveE

17




To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP—hard.\\

New goal: show MCj, is NP-complete.

Stretched linear Vector Max-Cut (MCY,)
For W a fixed diagonal matrix,
and a graph G = (V, E), q
timat - == 0 — v
estimate MCy, (G) = 5 2%, WXE:E |Wa— Wi

Intuition: W defines an ellipsoid (if W = I, then its the unit sphere).
Given some graph, the problem is to embed the vertices onto the ellipsoid’s surface to
maximize the sum of the edge lengths.

17
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: show MCj, is NP-complete.

Proof sketch:
1. Given a graph G, construct a new graph G’ by replacing each edge with a 3-clique
(triangle) gadget.
2. Observe that maximizing the distance between the vectors in a 3-clique

is equivalent to picking 3 points on an ellipsoid
which inscribe a triangle with maximum perimeter.

m e.g. In a sphere, a max perimeter triangle must be regular, all angles 60°.

3. Argue that the uniqueness of maximum perimeter triangles implies the same 3
vectors need to be assigned to every 3-clique gadget.

This relates the MCY,, value of G’ to the 3-colorability of G.
And 3-Coloring is NP-complete.
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For S any fixed set of 2-qubit Hamiltonian terms, N\
if every matrix in S is 1-local then S-prodLH is in P,
and otherwise S-prodLH is NP-complete.

Proof summary
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For S any fixed set of 2-qubit Hamiltonian terms, N\
if every matrix in S is 1-local then S-prodLH is in P,
and otherwise S-prodLH is NP-complete.

Proof summary
m If every term is 1-local, then we can optimize the state of each qubit individually,
so the problem is in P.
m prodLH is always contained in NP, using product states’ efficient classical
descriptions.
m To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.

1. Construct Hamiltonian gadgets so the minimum product state energy has a nice
form, like | Wu — Wv||.
2. Show MC}, is NP-hard by a reduction from 3-Coloring.

19
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Corollary: Quantum Max-Cut

Definition
Quantum Max-Cut is equivalent to S-LH with § = {XX + YY + ZZ}.

Our classification theorem implies the following.

Corollary
Quantum Max-Cut restricted to product states, prodQMC, is NP-complete.
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Corollary: Quantum Max-Cut

Definition
Quantum Max-Cut is equivalent to S-LH with § = {XX + YY + ZZ}.

Our classification theorem implies the following.

Corollary

Quantum Max-Cut restricted to product states, prodQMC, is NP-complete.

Corollary
3D-Vector-Max-Cut is NP-complete.
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Complexity Classification of Product State Problems for Local Hamiltonians AN
arXiv: 2401.06725
John Kallaugher, Ojas Parekh, Kevin Thompson, Yipu Wang, Justin Yirka

1. Product state complexity: Given any set S of allowed
2-qubit terms, estimating the minimum product state energy on
the family of Hamiltonians is either in P or is NP-complete.

= S-LH is at least NP-hard if and only if prodLH is
NP-complete.

2. Stretched linear Vector Max-Cut, I\/IC%/V, is NP-complete.
3. Product states in the Quantum Max-Cut model are NP-complete.
Open problems:

1. Can we use complexity of product state problem to prove the general ground states
of a class of Hamiltonians are not hard?

2. Classify S-prodLH with additional restrictions, e.g. only positive weights, spatial
geometry?
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