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De�nition

A n-qubit Hamiltonian is a 2n × 2n Hermitian matrix.
Its eigenvectors and eigenvalues correspond to states and energies of a physical system.

A k-local Hamiltonian is a sum of Hamiltonian terms each acting on at most k-qubits:

H =
∑
i

HSi ⊗ ISi |Si | ≤ k

De�nition

The k-LH problem is, given a k-local Hamiltonian, estimate its minimum eigenvalue /
ground state energy.

This is analogous to the classical k-Max-SAT problem, where each clause acts on k
variables.
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We are often interested in the complexity of k-LH restricted to speci�c sets or families
of Hamiltonians.

In particular, families of Hamiltonians de�ned by what k-qubit terms Hi are allowed.

De�nition

For a �xed set S of allowed terms / allowed interactions,
the S-LH problem is k-LH with the promise that any input is of the form

H =
∑

wiHi with Hi ∈ S
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For a �xed set S of allowed terms / allowed interactions,
the S-LH problem is k-LH with the promise that any input is of the form

H =
∑

wiHi with Hi ∈ S

S-LH classi�cation

[Cubitt, Montanaro 2015], with [Bravyi, Hastings 2014], give a complete classi�cation
of 2-local S-LH as a function of S.

Given any set S of 2-qubit terms, [CM15] describes properties of the terms which
determine whether S-LH is in P or NP-, StoqMA-, or QMA-complete.
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What about product states?

What is the complexity of estimating minimum product state energies of various
families of local Hamiltonians?
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De�nition

A product state is an unentangled tensor product of single-qubit states.

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn

Product states can be described e�ciently classically.

They're intermediate between classical states and general quantum states.

For many natural sets of Hamiltonians, product states are rigorously near-optimal.
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A product state is an unentangled tensor product of single-qubit states.
k-LH → prodLH

S-LH → S-prodLH

: the problem prodLH restricted to H =
∑

wiHi with Hi ∈ S.

Main Theorem (S-prodLH classi�cation)

For any �xed set of 2-qubit Hamiltonian terms S,
if every matrix in S is 1-local then S-prodLH is in P,
and otherwise S-prodLH is NP-complete.

Corollary

For any �xed set of 2-qubit Hamiltonian terms S,
the problem S-LH is at least NP-hard if and only if S-prodLH is NP-complete.
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A product state is an unentangled tensor product of single-qubit states.
k-LH → prodLH: given a k-local Hamiltonian, calculate the minimum energy over all

product states: min|ψ⟩ ⟨ψ|H|ψ⟩ for |ψ⟩ = |ψ1⟩|ψ2⟩. . .|ψn⟩.
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Main Theorem (S-prodLH classi�cation)

For S any �xed set of 2-qubit Hamiltonian terms,
if every matrix in S is 1-local then S-prodLH is in P,
and otherwise S-prodLH is NP-complete.

Proof sketch

If every term is 1-local, then we can optimize the state of each qubit individually,
so the problem is in P.

prodLH is always contained in NP, using product states' e�cient classical
descriptions.

To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.

As an example, consider the 2-qubit term

H = X ⊗ X + Y ⊗ Y + Z ⊗ Z

Product state problems can be viewed as optimization over Bloch vectors.
Let |ϕv ⟩⟨ϕv | =

1

2
(I + v1X + v2Y + v3Z )

Then the energy of the interaction between qubits u and v is

Tr (H |ϕu⟩⟨ϕu| ⊗ |ϕv ⟩⟨ϕv |) = u1v1 + u2v2 + u3v3 = u · v

9
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.

So for the example S = {X ⊗ X + Y ⊗ Y + Z ⊗ Z}, the problem S-prodLH is
equivalent to optimizing sums of inner products:∑

uv∈E
wuv u · v

over unit vectors u, v ∈ R3.

This is a relatively �nice� objective function.

New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form like this?
If not, can we force it to?
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form? Can we force it to?

Write arbitrary 2-qubit H in Pauli basis:

H =
3∑

i ,j=1

Mijσi ⊗ σj +
3∑

k=1

ckσk ⊗ I + wk I ⊗ σk .

Then
Tr (H |ϕu⟩⟨ϕu| ⊗ |ϕv ⟩⟨ϕv |) = u⊤Mv + c⊤u + w⊤v

This is not as simple as u · v , but we can design gadgets to simplify it.
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form? Can we force it to?

Tr (H |ϕu⟩⟨ϕu| ⊗ |ϕv ⟩⟨ϕv |) = u⊤Mv + c⊤u + w⊤v

Trick 1: Symmetrize
It's nice when the objective function is symmetric, so acting on uv is the same as acting
on vu.
Then we can work with un-directed graph problems.

Hsym = Hab + Hba = Hab + SWAPHab SWAP

12
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form? Can we force it to?

Tr (H |ϕu⟩⟨ϕu| ⊗ |ϕv ⟩⟨ϕv |) = u⊤Mv + c⊤u + w⊤v

Trick 2: Delete 1-local terms c⊤u and w⊤v .

Use 4-qubit gadget with 2 ancilla

Guv = Huv
sym + Hab

sym − Hua
sym − Hbv

sym

vu

ab

+

+

� �
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form?
Further analysis of gadget: Guv = Huv

sym + Hab
sym − Hua

sym − Hbv
sym

vu

ab

+

+

� �

After the tricks, how does the expectation value relate to u and v?

Letting the ancilla a, b take optimal values, and summing the four contributions, we get

∥Mu −Mv∥

14
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: Given arbitrary 2-qubit H, does the optimum product state energy have a
nice form?

We've used Hamiltonian gadgets to embed an objective function of the form∑
uv∈E

∥Mu −Mv∥

into the minimum product state energy.

Now, we can focus on this completely classical graph & vector problem.
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To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
Now, we can focus on this completely classical graph & vector problem.

Stretched linear Vector Max-Cut (MCL

W )

For W a �xed diagonal matrix,
and a graph G = (V ,E ),
estimate

MCL

W (G ) =
1

2
max

û∈Sk−1

∑
uv∈E

∥Wû −Wv̂∥

In words, assign unit vectors v̂ ∈ Rk to each vertex v in order to maximize the
di�erence along each edge.

Theorem

For any �xed non-negative nonzero W = diag(α, β, γ)
MCL

W is NP-complete.
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Stretched linear Vector Max-Cut (MCL

W )

For W a �xed diagonal matrix,
and a graph G = (V ,E ),
estimate

MCL

W (G ) =
1

2
max
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uv∈E

∥Wû −Wv̂∥
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Intuition: W de�nes an ellipsoid (if W = I , then its the unit sphere).
Given some graph, the problem is to embed the vertices onto the ellipsoid's surface to
maximize the sum of the edge lengths.

17



To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: show MCL

W is NP-complete.

Stretched linear Vector Max-Cut (MCL

W )

For W a �xed diagonal matrix,
and a graph G = (V ,E ),
estimate MCL

W (G ) =
1

2
max
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∥Wû −Wv̂∥

Intuition: W de�nes an ellipsoid (if W = I , then its the unit sphere).
Given some graph, the problem is to embed the vertices onto the ellipsoid's surface to
maximize the sum of the edge lengths.

17



To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.
New goal: show MCL

W is NP-complete.

Proof sketch:

1. Given a graph G , construct a new graph G ′ by replacing each edge with a 3-clique
(triangle) gadget.

2. Observe that maximizing the distance between the vectors in a 3-clique
is equivalent to picking 3 points on an ellipsoid
which inscribe a triangle with maximum perimeter.

e.g. In a sphere, a max perimeter triangle must be regular, all angles 60◦.

3. Argue that the uniqueness of maximum perimeter triangles implies the same 3
vectors need to be assigned to every 3-clique gadget.

This relates the MCL

W value of G ′ to the 3-colorability of G .
And 3-Coloring is NP-complete.
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Main Theorem (S-prodLH classi�cation)

For S any �xed set of 2-qubit Hamiltonian terms,
if every matrix in S is 1-local then S-prodLH is in P,
and otherwise S-prodLH is NP-complete.

Proof summary

If every term is 1-local, then we can optimize the state of each qubit individually,
so the problem is in P.

prodLH is always contained in NP, using product states' e�cient classical
descriptions.

To Do: show if S contains a nontrivial 2-qubit term, then S-prodLH is NP-hard.

1. Construct Hamiltonian gadgets so the minimum product state energy has a nice

form, like ∥Wu −Wv∥.
2. Show MCL

W is NP-hard by a reduction from 3-Coloring.
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Corollary: Quantum Max-Cut

De�nition

Quantum Max-Cut is equivalent to S-LH with S = {XX + YY + ZZ}.

Our classi�cation theorem implies the following.

Corollary

Quantum Max-Cut restricted to product states, prodQMC, is NP-complete.

Corollary

3D-Vector-Max-Cut is NP-complete.
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Complexity Classi�cation of Product State Problems for Local Hamiltonians
arXiv: 2401.06725
John Kallaugher, Ojas Parekh, Kevin Thompson, Yipu Wang, Justin Yirka

1. Product state complexity: Given any set S of allowed
2-qubit terms, estimating the minimum product state energy on
the family of Hamiltonians is either in P or is NP-complete.

S-LH is at least NP-hard if and only if prodLH is
NP-complete.

2. Stretched linear Vector Max-Cut, MCL

W , is NP-complete.

3. Product states in the Quantum Max-Cut model are NP-complete.

Open problems:

1. Can we use complexity of product state problem to prove the general ground states
of a class of Hamiltonians are not hard?

2. Classify S-prodLH with additional restrictions, e.g. only positive weights, spatial
geometry?
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